ORTHOGONAL POLYNOMIALS FOR THE WEAKLY EQUILIBRIUM CANTOR SETS

GÖKALP ALPAN AND ALEXANDER GONCHAROV

Abstract

Let $K(\gamma)$ be the weakly equilibrium Cantor type set introduced in [16]. It is proven that the monic orthogonal polynomials $Q_{2}{ }^{s}$ with respect to the equilibrium measure of $K(\gamma)$ coincide with the Chebyshev polynomials of the set. Procedures are suggested to find Q_{n} of all degrees and the corresponding Jacobi parameters. It is shown that the sequence of the Widom factors is bounded below.

1. Introduction

This paper is concerned with the spectral theory of orthogonal polynomials for measures supported on Cantor sets with a special emphasis on purely singular continuous case. It should be noted that Cantor sets appear as supports of spectral measures for some important Schrödinger operators used in physics (see e.g. the review [27] and [3]). Nonetheless, here, our motivation is purely mathematical. We are interested in the following two problems related to orthogonal polynomials on Cantor-type sets. What can be said about the periodicity of corresponding Jacobi parameters? What is the notion of Szegő of measures on Cantor sets?

Concerning the first problem, the fundamental conjecture (see [21] and also Conjecture 3.1 in [18]) is that, for a large class of measures supported on Cantor sets, including the self-similar measures generated by linear iterated function systems (IFS), the corresponding Jacobi matrices are asymptotically almost periodic. Confirmation of this hypothesis may allow to extend the methods used in [11, 12] for the finite gap sets to the Cantor sets with zero Lebegue measure.

Concerning the second question, we mention that the Szegő theorem was generalized recently in [10] to the class of Parreau-Widom sets. Such sets may be Cantor sets, but they must be of positive Lebesgue measure.

We can mention two main directions in the development of the theory of orthogonal polynomials for purely singular continuous measures. The first deals with a renormalization technique suggested by Mantica in [20], which enables to efficiently compute Jacobi parameters (see e.g. [17, 18, 20]) for balanced measures via a linear IFS. Moreover, possible extensions of the notion of isospectral torus for singular continuous measures can be found in [18, 22].

On the other hand, there is a nice theory of orthogonal polynomials for equilibrium measures of real polynomial Julia sets (see e.g $[4,5,6,7]$). This includes

[^0]simple formulas for orthogonal polynomials and recurrence coefficients, and almost periodicity of Jacobi matrices for certain Julia sets.

Here, we consider a family of Cantor sets $K(\gamma)$, introduced in [16]. A sequence $\gamma=\left(\gamma_{s}\right)_{s=1}^{\infty}$ serves as a parameter for the considered family of sets. By changing γ we can get sets of different logarithmic capacity and Hausdorff dimension. At least in known cases, the set $K(\gamma)$ is dimensional, that is there exists a dimension function h such that for the corresponding Hausdorff measure Λ_{h} we have $0<$ $\Lambda_{h}(K(\gamma))<\infty$. By [1], $\mu_{K(\gamma)}$ is mutually absolutely continuous with Λ_{h}. This is not valid for geometrically symmetric zero Lebesgue measure Cantor sets, where, by [19] and followers, these measures are mutually singular.

We remark that, in the construction of the set, the technique of inverse polynomial images was central. Thus, our results can be compared with [8, 15]. Furthermore, similarities between the results obtained here and for orthogonal polynomial Julia sets are not mere coincidence. As soon as inf $\gamma_{k}>0, K(\gamma)$ can be considered as a generalized polynomial Julia set in the sense of Brück-Büger [9]. Moreover, some results of this paper can be transferred into a more general setting. For more details, we refer the reader to [2].

Our paper is organized as follows. In Section 2 we recall some facts from [16] about $K(\gamma)$ and show that $Q_{2^{s}}$ coincides with the corresponding Chebyshev polynomial. In Sections 3 and 4 we suggest a procedure to find Q_{n} for $n \neq 2^{s}$. This allows to analyze the asymptotic behavior of the Jacobi parameters $\left(a_{n}\right)_{n=1}^{\infty}$. Note that, if one can obtain a stronger version of Theorem 4.7 by showing that the limit of $a_{j 2^{s}+n}$ hold uniformly in n and j as in [6], this would imply that the Jacobi matrices considered here are almost periodic provided that sup $\gamma_{k} \leq 1 / 6$.

Since $\operatorname{Cap}(K(\gamma))$ is known, we estimate (Section 5) the Widom factors $W_{n}:=$ $\frac{a_{1} \cdots a_{n}}{\operatorname{Cap}(K(\gamma))^{n}}$ and check the Widom condition, that characterizes the Szegő class of Jacobi matrices in the finite gap case. In the last section we discuss a possible version of the Szegő condition for singular continuous measures. At least for $\gamma_{s} \leq$ $1 / 6, s \in \mathbb{N}$, the Lebesgue measure of the set $K(\gamma)$ is zero, so it is not a ParreauWidom set and the Szegő condition from [10] cannot be applied.

For the basic concepts of the theory of logarithmic potential see e.g [25], log denotes the natural logarithm, $\operatorname{Cap}(\cdot)$ stands for the logarithmic capacity, $0^{0}:=1$. We denote $\{1,2, \ldots\}$ by \mathbb{N} and $\mathbb{N} \cup\{0\}$ by \mathbb{N}_{0}.

2. Orthogonal Polynomials

Given a sequence $\gamma=\left(\gamma_{s}\right)_{s=1}^{\infty}$ with $0<\gamma_{s}<1 / 4$ define $r_{0}=1$ and $r_{s}=\gamma_{s} r_{s-1}^{2}$. Let

$$
\begin{equation*}
P_{1}(x):=x-1 \text { and } P_{2^{s+1}}(x):=P_{2^{s}}(x) \cdot\left(P_{2^{s}}(x)+r_{s}\right) \tag{2.1}
\end{equation*}
$$

for $s \in \mathbb{N}_{0}$ in a recursive fashion. Thus, $P_{2}(x)=x \cdot(x-1)$ for each γ, whereas, for $s \geq 2$, the polynomial $P_{2^{s}}$ essentially depends on the parameter γ. For $s \in \mathbb{N}_{0}$ consider a nested sequence of sets

$$
E_{s}=\left\{x \in \mathbb{R}: P_{2^{s+1}}(x) \leq 0\right\}=\left(\frac{2}{r_{s}} P_{2^{s}}+1\right)^{-1}([-1,1])=\cup_{j=1}^{2^{s}} I_{j, s}
$$

where $I_{j, s}$ are closed basic intervals of the s-th level which are necessarily disjoint. Let $l_{j, s}$ stand for the length of $I_{j, s}$ where we enumerate them from the left to the right. By Lemma 2 in [16], $\max _{1 \leq j \leq 2^{s}} l_{j, s} \rightarrow 0$ as $s \rightarrow \infty$. Therefore, $K(\gamma):=$ $\cap_{s=0}^{\infty} E_{s}$ is a Cantor set.

By Lemma 6 in [16],

$$
\gamma_{1} \ldots \gamma_{s}<l_{i, s}<\exp \left(16 \sum_{k=1}^{s} \gamma_{k}\right) \gamma_{1} \ldots \gamma_{s}, \quad 1 \leq i \leq 2^{s} \text {, }
$$

provided $\gamma_{k} \leq 1 / 32$ for all k. Then the Lebesgue measure $\left|E_{s}\right|$ of the set E_{s} does not exceed $(\sqrt{e} / 16)^{s}$. Here, $|K(\gamma)|=0$ and, by [10], $K(\gamma)$ is not a Parreau-Widom set. In Section 4 we will show that $|K(\gamma)|=0$ as well if $\gamma_{k} \leq 1 / 6$ for all k.

On the other hand, by choosing $\left(\gamma_{k}\right)_{k=1}^{\infty}$ sufficiently close to $1 / 4$, we can obtain Cantor sets with positive Lebesgue measure. What is more, in the limit case, when all $\gamma_{k}=1 / 4$, we get $E_{s}=[0,1]$ for all s and $K(\gamma)=[0,1]$ (see Example 1 in [16]).

In addition, using Green function $g_{\mathbb{C} \backslash K(\gamma)}$ (see Corollary 1 and Section 6 in [16]), one can easily find $\operatorname{Cap}(K(\gamma))=\exp \left(\sum_{k=1}^{\infty} 2^{-k} \log \gamma_{k}\right)$. In the paper we assume $\operatorname{Cap}(K(\gamma))>0$. Let $\mu_{K(\gamma)}$ denote the equilibrium measure on the set, $\|\cdot\|$ be the norm in the corresponding Hilbert space. From Corollary 3.2 in [1] we have $\mu_{K(\gamma)}\left(I_{j, s}\right)=2^{-s}$ for all s and $1 \leq j \leq 2^{s}$, provided $\gamma_{k} \leq 1 / 32$ for all k.

From now on, by Q_{n} we denote the monic orthogonal polynomial of degree $n \in \mathbb{N}$ with respect to $\mu_{K(\gamma)}$. The main result of this section is that, for $n=2^{s}$ with $s \in \mathbb{N}_{0}$, the polynomial Q_{n} coincides with the corresponding Chebyshev polynomial for $K(\gamma)$. The next two theorems will play a crucial role.

Theorem 2.1 ([16], Prop.1). For each $s \in \mathbb{N}_{0}$ the polynomial $P_{2^{s}}+r_{s} / 2$ is the Chebyshev polynomial for $K(\gamma)$.

Remark 2.2. Only the values $s \in \mathbb{N}$ were considered in [16]. But, clearly, for $s=0$ the polynomial $P_{1}(x)+1 / 2=x-1 / 2$ is Chebyshev.

Remark 2.3. Since real polynomials are considered here and the alternating set for $P_{2^{s}}+r_{s} / 2$ consists of $2^{s}+1$ points, the Chebyshev property of this polynomial follows by the Chebyshev alternation theorem.
Theorem 2.4 ([26], III.T.3.6). Let $K \subset \mathbb{R}$ be a non-polar compact set. Then the normalized counting measures on the zeros of the Chebyshev polynomials converge to the equilibrium measure of K in the weak-star topology.

For $s \in \mathbb{N}$, the polynomial $P_{2^{s}}+r_{s} / 2$ has simple real zeros $\left(x_{k}\right)_{k=1}^{2^{s}}$ which are symmetric about $x=1 / 2$. Let us denote by ν_{s} the normalized counting measure at these points, that is $\nu_{s}=2^{-s} \sum_{k=1}^{2^{s}} \delta_{x_{k}}$.
Lemma 2.5. Let $s>m$ with $s, m \in \mathbb{N}_{0}$. Then $\int\left(P_{2^{m}}+\frac{r_{m}}{2}\right) d \nu_{s}=0$.
Proof. For $m=0$ we have the result by symmetry. Suppose $m \geq 1$. By (2.1), at the points $\left(x_{k}\right)_{k=1}^{2^{s}}$ we have

$$
P_{2^{s}}+\frac{r_{s}}{2}=\left(P_{2^{s-1}}\right)^{2}+r_{s-1} P_{2^{s-1}}+\frac{r_{s}}{2}=0 .
$$

The discriminant of the equation is positive. Therefore, the roots satisfy

$$
\left(P_{2^{s-1}}+\alpha_{s-1}^{1}\right)\left(P_{2^{s-1}}+\alpha_{s-1}^{2}\right)=0
$$

where $\alpha_{s-1}^{1}+\alpha_{s-1}^{2}=r_{s-1}$ and $0<\alpha_{s-1}^{1}, \alpha_{s-1}^{2}<r_{s-1}$. Thus, a half of the points satisfy $P_{2^{s-1}}+\alpha_{s-1}^{1}=0$ while the other half satisfy $P_{2^{s-1}}+\alpha_{s-1}^{2}=0$.

Rewriting the equation $P_{2^{s-1}}+\alpha_{s-1}^{1}=0$, we see that

$$
P_{2^{s-2}}^{2}+r_{s-2} P_{2^{s-2}}+\alpha_{s-1}^{1}=0
$$

Since $r_{s-2}^{2}>4 r_{s-1}>4 \alpha_{s-1}^{1}$, this yields

$$
\left(P_{2^{s-2}}+\alpha_{s-2}^{1}\right)\left(P_{2^{s-2}}+\alpha_{s-2}^{2}\right)=0
$$

with $\alpha_{s-2}^{1}+\alpha_{s-2}^{2}=r_{s-2}$ and $0<\alpha_{s-2}^{1}, \alpha_{s-2}^{2}<r_{s-2}$. By the same argument, the second half of the roots satisfy

$$
\left(P_{2^{s-2}}+\alpha_{s-2}^{3}\right)\left(P_{2^{s-2}}+\alpha_{s-2}^{4}\right)=0
$$

with $\alpha_{s-2}^{3}+\alpha_{s-2}^{4}=r_{s-2}$ and $0<\alpha_{s-2}^{3}, \alpha_{s-2}^{4}<r_{s-2}$.
Since at each step $r_{i-1}^{2}>4 r_{i}$ we can continue this procedure until obtaining $P_{2^{m+1}}$. So we can decompose the Chebyshev nodes $\left(x_{k}\right)_{k=1}^{2^{s}}$ into 2^{s-m-1} groups. All 2^{m+1} nodes from the i-th group G_{i} satisfy

$$
P_{2^{m+1}}+\alpha_{m+1}^{i}=0, \quad 0<\alpha_{m+1}^{i}<r_{m+1}
$$

By using these 2^{s-m-1} equations we finally obtain

$$
\left(P_{2^{m}}+\alpha_{m}^{2 i-1}\right)\left(P_{2^{m}}+\alpha_{m}^{2 i}\right)=0
$$

where $\alpha_{m}^{2 i-1}+\alpha_{m}^{2 i}=r_{m}$. Thus, given fixed i with $1 \leq i \leq 2^{s-m-1}$, for 2^{m} points from the group G_{i} we have $P_{2^{m}}=-\alpha_{m}^{2 i-1}$, whereas for the other half, $P_{2^{m}}=-\alpha_{m}^{2 i}$. Consequently,

$$
\int\left(P_{2^{m}}+\frac{r_{m}}{2}\right) d \nu_{s}=\int P_{2^{m}} d \nu_{s}+\frac{r_{m}}{2}=\frac{\sum_{i=1}^{2^{s-m-1}} 2^{m}\left(-\alpha_{m}^{2 i-1}-\alpha_{m}^{2 i}\right)}{2^{s}}+\frac{r_{m}}{2}=0
$$

Lemma 2.6. Let $0 \leq i_{1}<i_{2}<\ldots i_{n}<s$. Then
(a) $\int P_{2^{i_{1}}} P_{2^{i_{2}}} \ldots P_{2^{i_{n}}} d \nu_{s}=\int P_{2^{i_{1}}} d \nu_{s} \int P_{2^{i_{2}}} d \nu_{s} \ldots \int P_{2^{i_{n}}} d \nu_{s}=(-1)^{n} \prod_{k=1}^{n} \frac{r_{i_{k}}}{2}$.
(b) $\int\left(P_{2^{i_{1}}}+\frac{r_{i_{1}}}{2}\right)\left(P_{2^{i_{2}}}+\frac{r_{i_{2}}}{2}\right) \ldots\left(P_{2^{i_{n}}}+\frac{r_{i_{n}}}{2}\right) d \nu_{s}=0$.

Proof. (a) Suppose that $i_{1} \geq 1$. As above, we can decompose the nodes $\left(x_{k}\right)_{k=1}^{2^{s}}$ into $2^{s-i_{1}-1}$ equal groups such that the nodes from the j-th group satisfy an equation

$$
\left(P_{2^{i_{1}}}+\alpha_{i_{1}}^{2 j-1}\right)\left(P_{2^{i_{1}}}+\alpha_{i_{1}}^{2 j}\right)=0
$$

with $\alpha_{i_{1}}^{2 j-1}+\alpha_{i_{1}}^{2 j}=r_{i_{1}}$. If, on some set, $\left(P_{2^{k}}+\alpha\right)\left(P_{2^{k}}+\beta\right)=0$ with $\alpha+\beta=r_{k}$, then $P_{2^{k+1}}=P_{2^{k}}^{2}+P_{2^{k}} r_{k}=-\alpha \beta$. Hence, for each $i \in \mathbb{N}$, the polynomial $P_{2^{k+i}}$ is constant on this set. Therefore the function $P_{2^{i_{2}}} \ldots P_{2^{i_{n}}}$ takes the same value for all x_{k} from the j-th group. This allows to apply the argument of Lemma 2.5:

$$
\int P_{2^{i_{1}}} P_{2^{i_{2}}} \ldots P_{2^{i_{n}}} d \nu_{s}=-\frac{r_{i_{1}}}{2} \int P_{2^{i_{2}}} P_{2^{i_{3}}} \ldots P_{2^{i_{n}}} d \nu_{s}
$$

This equality is valid also for $i_{1}=0$ since

$$
\int\left(P_{1}+\frac{1}{2}\right) P_{2^{i_{2}}} \ldots P_{2^{i_{n}}} d \nu_{s}=0
$$

by symmetry. Proceeding this way, the result follows, since $-r_{m} / 2=$ $\int P_{2^{m}} d \nu_{s}$, by Lemma 2.5.
(b) Opening the parentheses yields

$$
\int P_{2^{i_{1}}} P_{2^{i_{2}}} \ldots P_{2^{i_{n}}} d \nu_{s}+\sum_{k=1}^{n} \frac{r_{i_{k}}}{2} \int \prod_{j \neq k} P_{2^{i_{j}}} d \nu_{s}+\cdots+\prod_{k=1}^{n} \frac{r_{i_{k}}}{2} .
$$

By Lemma 2.5 and part (a), this is

$$
\prod_{k=1}^{n} \frac{r_{i_{k}}}{2} \cdot \sum_{k=0}^{n}\binom{n}{k}(-1)^{n-k}=0
$$

Remark 2.7. We can use $\mu_{K(\gamma)}$ instead of ν_{s} in Lemma 2.5 and Lemma 2.6, since, by Theorem 2.4, $\nu_{s} \rightarrow \mu_{K(\gamma)}$ in the weak-star topology.

Theorem 2.8. The monic orthogonal polynomial $Q_{2^{s}}$ with respect to the equilibrium measure $\mu_{K(\gamma)}$ coincides with the corresponding Chebyshev polynomial $P_{2^{s}}+$ $r_{s} / 2$ for all $s \in \mathbb{N}_{0}$.

Proof. For $s=0$ we have the result by symmetry. Let $s \geq 1$. Each polynomial $P(x)$ of degree less than 2^{s} is a linear combination of polynomials of the type

$$
\left(P_{2^{s-1}}(x)+\frac{r_{s-1}}{2}\right)^{n_{s-1}} \ldots\left(P_{2}(x)+\frac{r_{1}}{2}\right)^{n_{1}}\left(x-\frac{1}{2}\right)^{n_{0}}
$$

with $n_{i} \in\{0,1\}$. By Lemma 2.6, $P_{2^{s}}+r_{s} / 2$ is orthogonal to all polynomials of degree less than 2^{s}, so it is $Q_{2^{s}}$.

By (2.1), we immediately have
Corollary 2.9. $Q_{2^{s+1}}=Q_{2^{s}}^{2}-\left(1-2 \gamma_{s+1}\right) r_{s}^{2} / 4$ for $s \in \mathbb{N}_{0}$.

3. Some products of orthogonal polynomials

So far we only obtain orthogonal polynomials of degree 2^{s}. We try to find Q_{n} for other degrees. By Corollary 2.9, since $\int Q_{2^{s+1}} d \mu_{K(\gamma)}=0$, we have

$$
\begin{equation*}
\left\|Q_{2^{s}}\right\|^{2}=\int Q_{2^{s}}^{2} d \mu_{K(\gamma)}=\left(1-2 \gamma_{s+1}\right) r_{s}^{2} / 4 \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{2^{s+1}}=Q_{2^{s}}^{2}-\left\|Q_{2^{s}}\right\|^{2}, \forall s \in \mathbb{N}_{0} \tag{3.2}
\end{equation*}
$$

Our next goal is to evaluate $\int A d \mu_{K(\gamma)}$ for A-polynomial of the form

$$
\begin{equation*}
A=\left(Q_{2^{s_{n}}}\right)^{i_{n}}\left(Q_{2^{s_{n-1}}}\right)^{i_{n-1}} \ldots\left(Q_{2^{s_{1}}}\right)^{i_{1}} \tag{3.3}
\end{equation*}
$$

where $s_{n}>s_{n-1}>\ldots>s_{1}>0$ and $i_{1}, i_{2}, \ldots, i_{n} \in\{1,2\}$.
The next lemma is basically a consequence of (3.2).
Lemma 3.1. Let A be a polynomial satisfying (3.3). Then the following propositions hold:
(a) If $i_{n}=2$ then $\int A d \mu_{K(\gamma)}=\left\|Q_{2^{s_{n}}}\right\|^{2} \int Q_{2^{s_{n-1}}}^{i_{n-1}} \cdots Q_{2^{s_{1}}}^{i_{1}} d \mu_{K(\gamma)}$.
(b) Suppose that $n=k+m$ with $i_{n}=i_{n-1}=\ldots=i_{k+1}=1$ and $i_{k}=2$. In addition, let $s_{k+j}=s_{k}+j$ for $1 \leq j \leq m$. Then

$$
\int A d \mu_{K(\gamma)}=\left\|Q_{2^{s_{n}}}\right\|^{2} \int Q_{2^{s_{k-1}}}^{i_{k-1}} \cdots Q_{2^{s_{1}}}^{i_{1}} d \mu_{K(\gamma)} .
$$

(c) If $i_{k}=1$ and $s_{k} \geq s_{k-1}+2$ for some $k \in\{2,3, \ldots, n\}$, then $\int A d \mu_{K(\gamma)}=0$.
(d) If $i_{1}=1$ then $\int A d \mu_{K(\gamma)}=0$.

Proof. (a) Using (3.2), we have $Q_{2^{s_{n}}}^{2}=Q_{2^{s_{n}+1}}+\left\|Q_{2^{s_{n}}}\right\|^{2}$. The result easily follows since the degree of $Q_{2^{s_{n-1}}}^{i_{n-1}} \cdots Q_{2^{s_{1}}}^{i_{1}}$ is less than $2^{s_{n}+1}$.
(b) Here $A=Q_{2^{s_{n}}} Q_{2^{s_{n}-1}} \cdots Q_{2^{s_{k}+1}} Q_{2^{s_{k}}}^{2} \cdot P$ with $P=Q_{2^{s_{k-1}}}^{i_{k-1}} \cdots Q_{2^{s_{1}}}^{i_{1}}$. Observe that $\operatorname{deg} P<2^{s_{k-1}+2} \leq 2^{s_{k+1}}$. We apply (3.2) repeatedly. First, since $s_{k+1}=s_{k}+1$, we have $Q_{2^{k}}^{2}=Q_{2^{s_{k+1}}}+\left\|Q_{2^{s_{k}}}\right\|^{2}$. Similarly, $Q_{2^{s_{k}+1}} Q_{2^{s_{k}}}^{2}=$ $Q_{2^{s_{k}+2}}+\left\|Q_{2^{s_{k+1}}}\right\|^{2}+Q_{2^{s_{k+1}}}\left\|Q_{2^{s_{k}}}\right\|^{2}$. After m steps we write A in the form $\left(Q_{2^{s_{n}+1}}+\left\|Q_{2^{s_{n}}}\right\|^{2}+\mathcal{L}\right) P$, where \mathcal{L} is a linear combination of the polynomials $Q_{2^{s_{n}}}, Q_{2^{s_{n}}} Q_{2^{s_{n}-1}}, \cdots, Q_{2^{s_{n}}} Q_{2^{s_{n}-1}} \cdots Q_{2^{s_{k+1}}}$. Here, $2^{s_{n}}>2^{s_{n}-1}+$ $\cdots 2^{s_{k+1}}+\operatorname{deg} P$. By orthogonality, all terms vanish after integration, except $\left\|Q_{2^{s_{n}}}\right\|^{2} P$, which is the desired conclusion.
(c) Let us take the maximal k with such property. Repeated application of (a) and (b) enables us to reduce $\int A d \mu_{K(\gamma)}$ to $C \int A_{1} d \mu_{K(\gamma)}$ with $C>0$ and $A_{1}=Q_{2^{s_{m}}} \cdots Q_{2^{s_{k}}} \cdot R$, where $R=Q_{2^{s_{k-1}}}^{i_{k-1}} \cdots Q_{2^{s_{1}}}^{i_{1}}$ with $\operatorname{deg} R<2^{s_{k-1}+2} \leq 2^{s_{k}}$. Comparing the degrees gives the result.
(d) Take the largest k with $i_{1}=i_{2}=\cdots=i_{k}=1$. Then, as above, $\int A d \mu_{K(\gamma)}=$ $C \cdot \int Q_{2^{s_{k}}} \cdots Q_{2^{s_{1}}} d \mu_{K(\gamma)}=0$, since the degree of the first polynomial exceeds the common degree of others.

Theorem 3.2. For A-polynomial given in (3.3), let $c_{k}=\left(i_{k}-1\right)^{s_{k}-s_{k-1}-1}$ and $c=$ $\prod_{k=1}^{n} c_{k}$. Here, $s_{0}:=-1$ and $i_{n+1}:=2$. Then $\int A d \mu_{K(\gamma)}=c \cdot \prod_{k=1}^{n}\left\|Q_{2^{k}}\right\|^{2\left(i_{k+1}-1\right)}$. Proof. First we remark that $c \in\{0,1\}$. Clearly, $c_{1}=\left(i_{1}-1\right)^{s_{1}}=0$ if and only if $i_{1}=1$. For $k>1$ we get $c_{k}=0$ if and only if $i_{k}=1$ and $s_{k}>s_{k-1}+1$. Therefore, $c=0$ just in the cases (c) and (d) above.

Let us show that the procedures $(a)-(d)$ of Lemma 3.1 allow to find $\int A d \mu_{K(\gamma)}$ for all values of $\left(i_{k}\right)_{k=1}^{n}$ and $\left(s_{k}\right)_{k=1}^{n}$ stated after (3.3). Consider the string $\mathcal{I}=$ $\left\{i_{n}, i_{n-1}, \cdots, i_{1}\right\}$. If $i_{1}=1$ then $c=0$ and $\int A d \mu_{K(\gamma)}=0$, by (d), so the result follows. Suppose $i_{1}=2$. Then we can decompose \mathcal{I} into substrings of the types $\{2\},\{1,2\}, \cdots,\{1, \cdots, 1,2\}$. The number and the ordering of such substrings may be arbitrary. We go over substrings of \mathcal{I} in left-to-right order. If we meet $\left\{i_{k}\right\}$ with $i_{k}=2$ then we use (a). Observe that here $i_{k+1}=2$ if $k \neq n$. Hence this substring contributes a term $\left\|Q_{2^{k}}\right\|^{2}$ into the product representing $\int A d \mu_{K(\gamma)}$. For a general substring $\left\{i_{k}, \cdots, i_{k-m}\right\}$ with $i_{k}=\cdots=i_{k-m+1}=1, i_{k-m}=2$ we also have $i_{k+1}=2$ provided that $k \neq n$. Consider the corresponding values s_{j} for $k-m \leq j \leq k$. Suppose that these numbers are consecutive, that is $s_{j+1}=s_{j}+1$ for $k-m \leq j \leq k-1$. Then we use the procedure (b). In this case, $i_{k+1}-1=1$ and
$i_{j+1}-1=0$ for $k-m \leq j \leq k-1$. As above, the substring gives a contribution $\left\|Q_{2^{k}}\right\|^{2}$ into the common product. Otherwise, $s_{j+1} \geq s_{j}+2$ for some j. Then, by $(c), \int A d \mu_{K(\gamma)}=0$. On the other hand, here, $c=c_{j}=0$, so the desired representation for $\int A d \mu_{K(\gamma)}$ is valid as well.
Corollary 3.3. For A-polynomial given in (3.3), let $A=A_{1} \cdot Q_{2^{s_{1}}}^{i_{1}}$, so A_{1} contains all terms of A except the last. Suppose $i_{1}=i_{2}=2$. Then $\int A d \mu_{K(\gamma)}=$ $\left\|Q_{2^{s_{1}}}\right\|^{2} \int A_{1} d \mu_{K(\gamma)}$.

We will represent Q_{n} in terms of B-polynomials that are defined, for $2^{m} \leq n<$ 2^{m+1} with $m \in \mathbb{N}_{0}$, as

$$
B_{n}=\left(Q_{2^{m}}\right)^{i_{m}}\left(Q_{2^{m-1}}\right)^{i_{m-1}} \ldots\left(Q_{1}\right)^{i_{1}}
$$

where $i_{k} \in\{0,1\}$ is the k-th coefficient in the binary representation $n=i_{m} 2^{m}+$ $\cdots+i_{0}$.

Thus, B_{n} is a monic polynomial of degree n. The polynomials $B_{(2 k+1) \cdot 2^{s}}$ and $B_{(2 j+1) \cdot 2^{m}}$ are orthogonal for all $j, k, m, s \in \mathbb{N}_{0}$ with $s \neq m$. Indeed, if $\min \{m, s\}=$ 0 then $\int B_{(2 k+1) \cdot 2^{s}} B_{(2 j+1) \cdot 2^{m}} d \mu_{K(\gamma)}=0$, since one polynomial is symmetric about $x=1 / 2$, whereas another is antisymmetric. Otherwise we use Lemma 3.1 (d). By (a), we have

$$
\left\|B_{n}\right\|^{2}=\prod_{k=0}^{m}\left\|Q_{2^{k}}\right\|^{2 i_{k}}=\prod_{k=0, i_{k} \neq 0}^{m}\left\|Q_{2^{k}}\right\|^{2}
$$

Theorem 3.4. For each $n \in \mathbb{N}$, let $n=2^{s}(2 k+1)$, the polynomial Q_{n} has a unique representation as a linear combination of $B_{2^{s}}, B_{3 \cdot 2^{s}} \ldots, B_{(2 k-1) \cdot 2^{s}}, B_{(2 k+1) \cdot 2^{s}}$.
Proof. Consider $P=a_{0} B_{2^{s}}+a_{1} B_{3 \cdot 2^{s}}+\ldots+a_{k-1} B_{(2 k-1) \cdot 2^{s}}+B_{(2 k+1) \cdot 2^{s}}$, where $\left(a_{j}\right)_{j=0}^{k-1}$ are chosen such that P is orthogonal to all $B_{(2 j+1) 2^{s}}$ with $j=0,1, \ldots, k-1$. This gives a system of k linear equations with k unknowns $\left(a_{j}\right)_{j=0}^{k-1}$. The determinant of this system is the Gram determinant of linearly independent functions $\left(B_{(2 j+1) 2^{s}}\right)_{j=0}^{k-1}$. Therefore it is positive and the system has a unique solution. In addition, as was remarked above, P is orthogonal to all $B_{(2 j+1) \cdot 2^{m}}$ with $m \neq s$. Thus, P is a monic polynomial of degree n that is orthogonal to all polynomials of degree $<n$, so $P=Q_{n}$.

Corollary 3.5. The polynomial $Q_{2^{s}(2 k+1)}$ is a linear combination of products of the type $Q_{2^{s_{m}}} Q_{2^{s_{m-1}}} \cdots Q_{2^{s}}$, so the smallest degree of $Q_{2^{s_{j}}}$ in every product is 2^{s}.

To illustrate the theorem, we consider, for given $s \in \mathbb{N}_{0}$, the easiest cases with $k \leq$ 2. Clearly, $Q_{2^{s}}=B_{2^{s}}$. Since $B_{3.2^{s}}=Q_{2^{s}} Q_{2^{s+1}}$, we take $Q_{3 \cdot 2^{s}}=a_{0} Q_{2^{s}}+Q_{2^{s+1}} Q_{2^{s}}$, where a_{0} is such that $\int Q_{3 \cdot 2^{s}} Q_{2^{s}} d \mu_{K(\gamma)}=0$. By Lemma 3.1,

$$
Q_{3 \cdot 2^{s}}=Q_{2^{s+1}} Q_{2^{s}}-\frac{\left\|Q_{2^{s+1}}\right\|^{2}}{\left\|Q_{2^{s}}\right\|^{2}} Q_{2^{s}} .
$$

Similarly, $B_{5 \cdot 2^{s}}=Q_{2^{s}} Q_{2^{s+2}}$ and $Q_{5 \cdot 2^{s}}=a_{0} Q_{2^{s}}+a_{1} Q_{2^{s+1}} Q_{2^{s}}+Q_{2^{s}} Q_{2^{s+2}}$ with

$$
a_{0}=\frac{\left\|Q_{2^{s+2}}\right\|^{2}}{\left\|Q_{2^{s}}\right\|^{4}-\left\|Q_{2^{s+1}}\right\|^{2}}, \quad a_{1}=-a_{0} \frac{\left\|Q_{2^{s}}\right\|^{2}}{\left\|Q_{2^{s+1}}\right\|^{2}}
$$

Using (3.1), all coefficient can be expressed only in terms of $\left(\gamma_{k}\right)_{k=1}^{\infty}$. As k gets bigger, the complexity of calculations increases.

Remark 3.6. In general, the polynomial Q_{n} is not Chebyshev. For example, $Q_{3}=$ $Q_{1}\left(Q_{2}+a_{0}\right)$ with $a_{0}=-\frac{\left(1-2 \gamma_{2}\right) \gamma_{1}^{2}}{1-2 \gamma_{1}}$. At least for small γ_{1}, the polynomial $Q_{3}(x)=$ $(x-1 / 2)\left(x^{2}-x+\gamma_{1} / 2+a_{0}\right)$ increases on the first basic interval $I_{1,1}=\left[0, l_{1,1}\right]$. Here, $l_{1,1}$ is the first solution of $P_{2}=-r_{1}$, so $l_{1,1}=\left(1-\sqrt{1-4 \gamma_{1}}\right) / 2$. If Q_{3} is the Chebyshev polynomial then, by the Chebyshev alternation theorem, $Q_{3}\left(l_{1,1}\right)=$ $Q_{3}(1)$, but it is not the case.

4. Jacobi parameters

Since the measure $\mu_{K(\gamma)}$ is supported on the real line, the polynomials $\left(Q_{n}\right)_{n=0}^{\infty}$ satisfy a three-term recurrence relation

$$
Q_{n+1}(x)=\left(x-b_{n+1}\right) Q_{n}(x)-a_{n}^{2} Q_{n-1}(x), \quad n \in \mathbb{N}_{0}
$$

The recurrence starts from $Q_{-1}:=0$ and $Q_{0}=1$. The Jacobi parameters $\left\{a_{n}, b_{n}\right\}_{n=1}^{\infty}$ define the matrix

$$
\left(\begin{array}{ccccc}
b_{1} & a_{1} & 0 & 0 & \ldots \tag{4.1}\\
a_{1} & b_{2} & a_{2} & 0 & \ldots \\
0 & a_{2} & b_{2} & a_{3} & \ldots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

where $\mu_{K(\gamma)}$ is is the spectral measure for the unit vector δ_{1} and the self-adjoint operator J on $l_{2}(\mathbb{N})$, which is defined by this matrix. We are interested in the analysis of asymptotic behavior of $\left(a_{n}\right)_{n=1}^{\infty}$. Since $\mu_{K(\gamma)}$ is symmetric about $x=1 / 2$, all b_{n} are equal to $1 / 2$. It is known (see e.g. [30]) that $a_{n}>0,\left\|Q_{n}\right\|=a_{1} \cdots a_{n}$, which, in turn, is the reciprocal to the leading coefficient of the orthonormal polynomial of degree n.

In the next lemmas we use the equality $\int Q_{n} Q_{m} Q_{n+m} d \mu_{K(\gamma)}=\left\|Q_{n+m}\right\|^{2}$, which follows by orthogonality of Q_{n+m} to all polynomials of smaller degree.
Lemma 4.1. For all $s \in \mathbb{N}_{0}$ and $k \in \mathbb{N}$ we have

$$
Q_{2^{s}(2 k+1)}=Q_{2^{s}} \cdot Q_{2^{s+1} k}-\frac{\left\|Q_{2^{s+1} k}\right\|^{2}}{\left\|Q_{2^{s}(2 k-1)}\right\|^{2}} Q_{2^{s}(2 k-1)}
$$

Proof. Consider the polynomial $P=Q_{2^{s}} \cdot Q_{2^{s+1} k}-\frac{\left\|Q_{2^{s+1} k_{k}}\right\|^{2}}{\left\|Q_{2^{s}(2 k-1)}\right\|^{2}} Q_{2^{s}(2 k-1)}$. Since $\operatorname{deg}\left(Q_{2^{s}} \cdot Q_{2^{s+1} k}\right)>\operatorname{deg} Q_{2^{s}(2 k-1)}$, it is a monic polynomial of degree $2^{s}(2 k+1)$. Let us show that P is orthogonal to Q_{n} for all n with $0 \leq n<2^{s}(2 k+1)$. This will mean that $P=Q_{2^{s}(2 k+1)}$.

Suppose $0 \leq n<2^{s}(2 k-1)$. Then orthogonality follows by comparison of the degrees.

If $n=2^{s}(2 k-1)$ then $\int P Q_{n} d \mu_{K(\gamma)}=0$ due to the choice of coefficient of the addend in P and the remark above.

Let $2^{s}(2 k-1)<n<2^{s}(2 k+1)$. We show that $\int Q_{2^{s}} Q_{2^{s+1} k} Q_{n} d \mu_{K(\gamma)}=0$. We write k in the form $k=2^{q}(2 l+1)$ with some $q, l \in \mathbb{N}_{0}$. In turn, $n=2^{m}(2 p+1)$ with $m \neq s$. By Corollary 3.5, $Q_{2^{s+1} k}$ is a linear combination of products of $Q_{2^{s_{j}}}$ with $\min s_{j}=s+1+q$ in every product. Similarly for Q_{n}, but here the smallest degree is 2^{m}. Therefore, $Q_{2^{s}} Q_{2^{s+1} k} Q_{n}$ is a linear combination of A-polynomials and for each A-polynomial the exponent of the smallest term is 1 . By Lemma 3.1(d), the corresponding integral is zero.

Lemma 4.2. For all $s \in \mathbb{N}_{0}$ and $k \in \mathbb{N}$ we have

$$
a_{2^{s}(2 k+1)}^{2} a_{2^{s}(2 k+1)-1}^{2} \cdots a_{2^{s+1} k+1}^{2}+a_{2^{s+1} k}^{2} a_{2^{s+1} k-1}^{2} \cdots a_{2^{s+1} k-2^{s}+1}^{2}=\left\|Q_{2^{s}}\right\|^{2}
$$

Proof. By Lemma 4.1 and the remark above,

$$
\begin{equation*}
\left\|Q_{2^{s}(2 k+1)}\right\|^{2}=\int Q_{2^{s}}^{2} Q_{2^{s+1} k}^{2} d \mu_{K(\gamma)}-\frac{\left\|Q_{2^{s+1} k}\right\|^{4}}{\left\|Q_{2^{s}(2 k-1)}\right\|^{2}} . \tag{4.2}
\end{equation*}
$$

Let us show that

$$
\int Q_{2^{s}}^{2} Q_{2^{s+1} k}^{2} d \mu_{K(\gamma)}=\left\|Q_{2^{s}}\right\|^{2}\left\|Q_{2^{s+1} k}\right\|^{2} .
$$

If $k=2^{m}$, we have this immediately, by Lemma 3.1(a).
Otherwise, $2^{s+1} k=2^{m}(2 l+1)$ with $l \in \mathbb{N}$ and $m \geq s+1$. Then, by Corollary $3.5, Q_{2^{s+1} k}$ is a linear combination of products $Q_{2^{s_{q}}} \cdots Q_{2^{s_{j}}} \cdots Q_{2^{m}}$ with $s_{j}>m$ except the last term. From here, $Q_{2^{s+1} k}^{2}=Q_{2^{m}}^{2} \cdot \sum \alpha_{j} A_{j}$, where $\sum \alpha_{j} A_{j}$ is a linear combination of A-type polynomials with $s_{1}>m$ for each A_{j}. Therefore,

$$
\left\|Q_{2^{s+1} k}\right\|^{2}=\sum \alpha_{j} \int A_{j} Q_{2^{m}}^{2} d \mu_{K(\gamma)}
$$

On the other hand,

$$
\int Q_{2^{s}}^{2} Q_{2^{s+1} k}^{2} d \mu_{K(\gamma)}=\sum \alpha_{j} \int A_{j} Q_{2^{m}}^{2} Q_{2^{s}}^{2} d \mu_{K(\gamma)}
$$

By Corollary 3.3, this is $\left\|Q_{2^{s}}\right\|^{2}\left\|Q_{2^{s+1} k}\right\|^{2}$.
Therefore, (4.2) can be written as

$$
\frac{\left\|Q_{2^{s}(2 k+1)}\right\|^{2}}{\left\|Q_{2^{s+1} k}\right\|^{2}}=\left\|Q_{2^{s}}\right\|^{2}-\frac{\left\|Q_{2^{s+1} k}\right\|^{2}}{\left\|Q_{2^{s}(2 k-1)}\right\|^{2}},
$$

which is the desired result, as $a_{n}=\left\|Q_{n}\right\| /\left\|Q_{n-1}\right\|$.
Theorem 4.3. The recurrence coefficients $\left(a_{n}\right)_{n=1}^{\infty}$ can be calculated recursively by using Lemma 4.2 and (3.1).

Proof. We already have $a_{1}=\left\|Q_{1}\right\|$ and $a_{2}=\left\|Q_{2}\right\| /\left\|Q_{1}\right\|$. Suppose, by induction, that all a_{i} are given up to $i=n$. If $n+1=2^{s}>2$ then

$$
\begin{equation*}
a_{n+1}=\frac{\left\|Q_{2^{s}}\right\|}{\left\|Q_{2^{s-1}}\right\| \cdot a_{2^{s-1}+1} \cdot a_{2^{s-1}+2} \cdots a_{2^{s}-1}} \tag{4.3}
\end{equation*}
$$

where the norms of polynomials can be found by (3.1).
Otherwise, $n+1=2^{s}(2 k+1)$ for some $s \in \mathbb{N}_{0}$ and $k \in \mathbb{N}$. By Lemma 4.2, we have

$$
\begin{equation*}
a_{n+1}^{2}=a_{2^{s}(2 k+1)}^{2}=\frac{\left\|Q_{2^{s}}\right\|^{2}-a_{2^{s+1} k}^{2} \cdots a_{2^{s+1} k-2^{s}+1}^{2}}{a_{2^{s}(2 k+1)-1}^{2} \cdots a_{2^{s+1} k+1}^{2}} \tag{4.4}
\end{equation*}
$$

provided $s \neq 0$. If $s=0$ then the denominator in the fraction above is absent. This gives a_{n+1}, since the recurrence coefficients are positive.

In order to illustrate the theorem, let us consider the cases of small s.
If $s=0$ then $n+1=2 k+1$ and $a_{2 k+1}^{2}=a_{1}^{2}-a_{2 k}^{2}$. Next, for $s=1$ and $s=2$,

$$
a_{4 k+2}^{2}=\frac{\left\|Q_{2}\right\|^{2}-a_{4 k}^{2} a_{4 k-1}^{2}}{a_{4 k+1}^{2}}, a_{8 k+4}^{2}=\frac{\left\|Q_{4}\right\|^{2}-a_{8 k}^{2} a_{8 k-1}^{2} a_{8 k-2}^{2} a_{8 k-3}^{2}}{a_{8 k+3}^{2} a_{8 k+2}^{2} a_{8 k+1}^{2}}, \text { etc. }
$$

Thus, $a_{1}=\frac{\sqrt{1-2 \gamma_{1}}}{2}, a_{2}=\frac{\sqrt{1-2 \gamma_{2}}}{\sqrt{1-2 \gamma_{1}}} \gamma_{1}, a_{3}^{2}=a_{1}^{2}-a_{2}^{2}, a_{4}=\frac{\gamma_{1} \gamma_{2} \sqrt{1-2 \gamma_{3}}}{a_{3} \sqrt{1-2 \gamma_{2}}}, a_{5}^{2}=a_{1}^{2}-a_{4}^{2}$, etc.

Remark 4.4. If $\gamma_{n}<1 / 4$ for $1 \leq n \leq s$ and $\gamma_{n}=1 / 4$ for $n>s$ then $K(\gamma)=E_{s}=$ $\left(2 P_{2^{s}} / r_{s}+1\right)^{-1}[-1,1]$. Here $\left(P_{2^{n}}+r_{n} / 2\right)_{n=0}^{\infty}$ are the Chebyshev polynomials for E_{s}, as is easy to check. Therefore Theorems 2.8 and 4.3 are applicable for this case as well. For further information about Jacobi parameters corresponding equilibrium measures of polynomial inverse images, we refer the reader to the article [15].
Remark 4.5. Suppose $\gamma_{n}=1 / 4$ for $n \leq N$ with $2^{s} \leq N<2^{s+1}$. Then $a_{1}=1 / \sqrt{8}$ and $a_{2}=a_{3}=\cdots=a_{2^{s+1}-1}=1 / 4$. In particular, if $\gamma_{n}=1 / 4$ for all n then $a_{n}=1 / 4$ for all $n \geq 2$, which corresponds to the case of the Chebyshev polynomials of first kind on $[0,1]$.
Lemma 4.6. Suppose $\gamma_{s} \leq 1 / 6$ for all s. For fixed $s \in \mathbb{N}_{0}$, let $c=\frac{4 \gamma_{s+1}^{2}}{\left(1-2 \gamma_{s+1}\right)^{2}}$ and $C=\frac{2}{1+\sqrt{1-4 c}}$. Then the following inequalities hold with $k \in \mathbb{N}_{0}$:
(a) If $n=2^{s}(2 k+1)$ then

$$
\frac{1}{2}\left\|Q_{2^{s}}\right\|^{2} \leq C^{-1}\left\|Q_{2^{s}}\right\|^{2} \leq a_{n}^{2} \cdots a_{n-2^{s}+1}^{2} \leq\left\|Q_{2^{s}}\right\|^{2}
$$

(b) If $n=2^{s}(2 k+2)$ then

$$
a_{n}^{2} \cdots a_{n-2^{s}+1}^{2} \leq C \frac{\left\|Q_{2^{s+1}}\right\|^{2}}{\left\|Q_{2^{s}}\right\|^{2}} \leq 2 \frac{\left\|Q_{2^{s+1}}\right\|^{2}}{\left\|Q_{2^{s}}\right\|^{2}}
$$

Proof. Note that, if γ_{s+1} increases from 0 to $1 / 6$, then c increases from 0 to $1 / 4$ and C increases from 1 to 2. By (3.1) and the definition of r_{s}, we get

$$
\begin{equation*}
\frac{\left\|Q_{2^{s+1}}\right\|^{2}}{\left\|Q_{2^{s}}\right\|^{2}}=\gamma_{s+1}^{2} r_{s}^{2} \frac{1-2 \gamma_{s+2}}{1-2 \gamma_{s+1}}=\left(1-2 \gamma_{s+2}\right) c\left\|Q_{2^{s}}\right\|^{2}<\left\|Q_{2^{s}}\right\|^{2} / 4 \tag{4.5}
\end{equation*}
$$

We proceed by induction. For a fixed $s \in \mathbb{N}_{0}$, let $k=0$. Then we have at once

$$
a_{2^{s}}^{2} \cdots a_{1}^{2}=\left\|Q_{2^{s}}\right\|^{2} \quad \text { and } \quad a_{2^{s+1}}^{2} \cdots a_{2^{s}+1}^{2}=\frac{\left\|Q_{2^{s+1}}\right\|^{2}}{\left\|Q_{2^{s}}\right\|^{2}}
$$

Suppose $(a),(b)$ are satisfied for $k \leq m$. We apply Lemma 4.2 with $k=m+1$:

$$
a_{2^{s}(2 m+3)}^{2} \cdots a_{2^{s}(2 m+2)+1}^{2}+a_{2^{s}(2 m+2)}^{2} \cdots a_{2^{s}(2 m+2)-2^{s}+1}^{2}=\left\|Q_{2^{s}}\right\|^{2}
$$

where for the addend we can use (b) for $k=m$. Therefore,

$$
\left\|Q_{2^{s}}\right\|^{2}-C \frac{\left\|Q_{2^{s+1}}\right\|^{2}}{\left\|Q_{2^{s}}\right\|^{2}} \leq a_{2^{s}(2 m+3)}^{2} \cdots a_{2^{s}(2 m+2)+1}^{2} \leq\left\|Q_{2^{s}}\right\|^{2}
$$

which is (a) for $k=m+1$, by (4.5).
Next, we claim that

$$
\begin{equation*}
a_{2^{s}(2 m+4)}^{2} \cdots a_{2^{s}(2 m+2)+1}^{2} \leq\left\|Q_{2^{s+1}}\right\|^{2} \tag{4.6}
\end{equation*}
$$

for $m \in \mathbb{N}_{0}$. If $m=2 l+1$ then we use Lemma 4.2 with $s+1$ instead of s :

$$
a_{2^{s+1}(2 k+1)}^{2} \cdots a_{2^{s+2} k+1}^{2}+\text { positive term }=\left\|Q_{2^{s+1}}\right\|^{2}
$$

which implies (4.6), if we take $k=l+1$, as $2(2 k+1)=2 m+4,4 k=2 m+2$.

Suppose m is even. Lemma 4.2 now gives

$$
\text { positive term }+a_{2^{s+2} k}^{2} \cdots a_{2^{s+2} k-2^{s+1}+1}^{2}=\left\|Q_{2^{s+1}}\right\|^{2}
$$

where we take $k=m / 2+1$. Thus, (4.6) holds true in both cases.
Putting together (a) for $k=m+1$ and (4.6) we get (b) for $k=m+1$.
Theorem 4.7. Let $\gamma_{s} \leq 1 / 6$ for all s. Then $\lim _{s \rightarrow \infty} a_{j \cdot 2^{s}+n}=a_{n}$ for $j \in \mathbb{N}$ and $n \in \mathbb{N}_{0}$. Here, $a_{0}:=0$. In particular, $\liminf a_{n}=0$.
Proof. We first show that $\lim _{s \rightarrow \infty} a_{j \cdot 2^{s}}=0$ for all $j \in \mathbb{N}$. Let $j=2^{l}(2 k+1)$ where $k, l \in \mathbb{N}_{0}$. For $s>0$, the Jacobi parameters admit the following inequality by Lemma 4.6(a):

$$
\begin{equation*}
a_{2^{s+l}(2 k+1)}^{2} \ldots a_{2^{s+l+1} k+1}^{2} \leq\left\|Q_{2^{s+l}}\right\|^{2} . \tag{4.7}
\end{equation*}
$$

If $i<s+l$ where $i \in \mathbb{N}_{0}$, we have $2^{s+l}(2 k+1)-2^{i}=2^{i}\left(2^{s+l-i}(2 k+1)-1\right)$. Since $2^{s+l-i}(2 k+1)-1$ is a positive odd number, by Lemma 4.6(a), we have the inequalities

$$
\frac{1}{2}\left\|Q_{2^{i}}\right\|^{2} \leq a_{2^{s+l}(2 k+1)-2^{i}}^{2} \ldots a_{2^{s+l}(2 k+1)-2^{i+1}+1}^{2} \text { for } i=0, \ldots, s+l-1 .
$$

We multiply these $s+l$ inequalities side by side:

$$
2^{-s-l}\left\|Q_{1}\right\|^{2} \cdots\left\|Q_{2^{s+l-1}}\right\|^{2} \leq a_{2^{s+l}(2 k+1)-1}^{2} \cdots a_{2^{s+l+1} k+1}^{2}
$$

and use (4.7):

$$
a_{j \cdot 2^{s}}^{2}=a_{2^{s+l}(2 k+1)}^{2} \leq \frac{2^{s+l}\left\|Q_{2^{s+l}}\right\|^{2}}{\left\|Q_{2^{s+l-1}}\right\|^{2}\left\|Q_{2^{s+l-2}}\right\|^{2} \ldots\left\|Q_{1}\right\|^{2}}
$$

By (4.5), the fraction above is bounded by 2^{-s-l+2}. Thus, $\lim _{s \rightarrow \infty} a_{j \cdot 2^{s}}=0$.
If $n=1$ then $a_{j \cdot 2^{s}+1}^{2}=a_{1}^{2}-a_{j \cdot 2^{s}}^{2} \rightarrow a_{1}^{2}$, which is our claim.
Suppose, by induction, that $\lim _{s \rightarrow \infty} a_{j \cdot 2^{s}+n}=a_{n}$ for $n=0,1, \ldots, m$ and all $j \in \mathbb{N}$. Let $m+1=2^{p}(2 q+1)$ where $p, q \in \mathbb{N}_{0}$. If $q=0$ then $j \cdot 2^{s}+m+1=j \cdot 2^{s-p}+1$, so we get the case with $n=1$. Thus, we can suppose $q \in \mathbb{N}$. Then $j \cdot 2^{s}+m+1=$ $2^{p}\left(2^{s+l-p}(2 k+1)+2 q+1\right)$ and, for large enough s, we can apply Lemma 4.2:
$a_{j \cdot 2^{s}+m+1}^{2} a_{j \cdot 2^{s}+m}^{2} \cdots a_{j \cdot 2^{s}+m-2^{p}+1}^{2}+a_{j \cdot 2^{s}+m-2^{p}}^{2} \cdots a_{j \cdot 2^{s}+m+1-2^{p+1}}^{2}=\left\|Q_{2^{p}}\right\|^{2}$.
Here all indices, except the first, are of the form $j \cdot 2^{s}+n$ with $n<m+1$. Therefore, by induction hypothesis, $a_{j \cdot 2^{s}+n}^{2} \rightarrow a_{n}$ as $s \rightarrow \infty$ and

$$
\left(\lim _{s \rightarrow \infty} a_{j \cdot 2^{s}+m+1}^{2}\right) a_{m}^{2} \cdots a_{m-2^{p}+1}^{2}+a_{m-2^{p}}^{2} \cdots a_{m+1-2^{p+1}}^{2}=\left\|Q_{2^{p}}\right\|^{2}
$$

On the other hand, if we apply Lemma 4.2 to the number $m+1$, then we get the same equality with a_{m+1}^{2} instead of $\lim _{s \rightarrow \infty} a_{j \cdot 2^{s}+m+1}^{2}$. Since all a_{k} are positive, we have the desired result.

Remark 4.8. Since $\lim \inf a_{n}=0$, by [14], $\mu_{K(\gamma)}$ is purely singular. In particular, this implies that $\mu_{K(\gamma)}$ is purely singular continuous since the equilibrium measure can not have isolated point in its support. Moreover, absence of a non-trivial absolutely continuous part of the equilibrium measure, by [24], guarantees that the support has zero Lebesgue measure. Thus $|K(\gamma)|=0$ if $\gamma_{s} \leq 1 / 6$ for all $s \in \mathbb{N}$.

5. Widom factors

A finite Borel measure μ supported on a non-polar compact set $K \subset \mathbb{C}$ is said to be regular in the Stahl-Totik sense if $\lim _{n \rightarrow \infty}\left\|Q_{n}\right\|^{\frac{1}{n}}=\operatorname{Cap}(K)$ where Q_{n} is the monic orthogonal polynomial of degree n corresponding to μ. It is known (see, e.g. $[28,31])$ that the equilibrium measure is regular in the Stahl-Totik sense. While $\left\|Q_{n}\right\|^{\frac{1}{n}} / \operatorname{Cap}(K)$ has limit 1, the ratio $W_{n}=\left\|Q_{n}\right\| /(\operatorname{Cap}(K))^{n}$ may have various asymptotic behavior. We call W_{n} the Widom factor due to the paper [32]. These values play an important role in spectral theory of orthogonal polynomials on several intervals.

Let $E=[\alpha, \beta] \backslash \bigcup_{i=1}^{n}\left(\alpha_{i}, \beta_{i}\right)$ where $\alpha, \beta \in \mathbb{R}$ and the intervals $\left(\alpha_{i}, \beta_{i}\right)$ are disjoint subsets of $[\alpha, \beta]$. Let $d \mu=f(t) d t$ on E and $\left(a_{n}\right)_{n=1}^{\infty}$ be the Jacobi parameters corresponding to μ. Then [12]

$$
\begin{equation*}
\int \log f(t) d \mu_{E}(t)>-\infty \Longleftrightarrow \limsup _{n \rightarrow \infty} \frac{a_{1} \ldots a_{n}}{\operatorname{Cap}(E)^{n}}>0 \tag{5.1}
\end{equation*}
$$

For further generalizations and different aspects of this result, see [10, 12, 13, 23, 29].
We already know that $\operatorname{Cap}(K(\gamma))=\exp \left(\sum_{k=1}^{\infty} 2^{-k} \log \gamma_{k}\right)$. In terms of $\left(\gamma_{k}\right)_{k=1}^{\infty}$ we can rewrite $\left\|Q_{2^{s}}\right\|$ as

$$
\begin{equation*}
\frac{\sqrt{1-2 \gamma_{s+1}}}{2} \exp \left(2^{s} \sum_{k=1}^{s} 2^{-k} \log \gamma_{k}\right) \tag{5.2}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
W_{2^{s}}=\frac{\sqrt{1-2 \gamma_{s+1}}}{2 \exp \left(\sum_{k=s+1}^{\infty} 2^{s-k} \log \gamma_{k}\right)} \geq \sqrt{2} \tag{5.3}
\end{equation*}
$$

since $\gamma_{s} \leq 1 / 4$. The limit values $\gamma_{s}=1 / 4$ for all s give the Widom Factors for the equilibrium measure on $[0,1]$.

Clearly, (5.3) implies that $\lim \sup W_{n}>0$. If $\gamma_{s} \leq 1 / 6$ for all s then

$$
\begin{equation*}
W_{2^{s}} \geq \sqrt{6} \tag{5.4}
\end{equation*}
$$

Let us show that, in this case, $\lim \inf W_{n}>0$.
Theorem 5.1. Let $\left(W_{n}\right)_{n=1}^{\infty}$ be Widom factors for $\mu_{K(\gamma)}$ where $\gamma_{s} \leq 1 / 6$ for all s. Then
(a) $\liminf _{s \rightarrow \infty} W_{2^{s}}=\liminf _{n \rightarrow \infty} W_{n}$.
(b) $\limsup _{n \rightarrow \infty} W_{n}=\infty$.

Proof. (a) We show that $W_{n}>W_{2^{s}}$ for $2^{s}<n<2^{s+1}$. Let $n=2^{s}+2^{s_{1}}+$ $\ldots+2^{s_{m}}$ with $s>s_{1}>s_{2}>\ldots>s_{m} \geq 0$. Then we decompose the product $a_{1} \cdots a_{n}$ into groups $\left(a_{1} \cdots a_{2^{s}}\right) \cdot\left(a_{2^{s}+1} \cdots a_{2^{s}+2^{s_{1}}}\right) \cdots\left(a_{2^{s}+\cdots+2^{s_{m-1}}+1} \cdots a_{n}\right)$. For the first group we have $a_{1} \cdots a_{2^{s}}=\left\|Q_{2^{s}}\right\|$. For the second group we use Lemma 4.6(a) with $n=2^{s}+2^{s_{1}}: a_{2^{s}+1} \cdots a_{2^{s}+2^{s_{1}}} \geq\left\|Q_{2^{s_{1}}}\right\| / \sqrt{2}$. Similar estimation is valid for all other groups. Therefore,

$$
\begin{aligned}
W_{n} & =\frac{a_{1} \cdots a_{2^{s}}}{\operatorname{Cap}(K(\gamma))^{s}} \frac{a_{2^{s}+1} \cdots a_{2^{s}+2^{s_{1}}}^{\operatorname{Cap}(K(\gamma))^{s_{1}}} \cdots \frac{a_{2^{s}+\cdots+2^{s_{m-1}}+1} \cdots a_{n}}{\operatorname{Cap}(K(\gamma))^{s_{m}}}}{} \\
& \geq W_{2^{s}} W_{2^{s_{1}}}^{\cdots W_{2^{s_{m}}}(\sqrt{2})^{-m}},
\end{aligned}
$$

which exceeds $W_{2^{s}}(\sqrt{3})^{m}$, by (5.4). From here, $\min _{2^{s} \leq n<2^{s+1}} W_{n}=W_{2^{s}}$ and the result follows.
(b) Applying the procedure above to $W_{2^{s}-1}$ and taking the limit gives the desired result.

In order to illustrate the behavior of Widom factors, let us consider some examples. Suppose $\gamma_{s} \leq 1 / 6$ for all s.
Example 5.2. If $\gamma_{s} \rightarrow 0$ then $W_{n} \rightarrow \infty$. Indeed, $W_{2^{s}} \geq \frac{1}{\sqrt{6}} \exp \left(\frac{1}{2} \log \frac{1}{\gamma_{s+1}}\right)$.
Example 5.3. There exists $\gamma_{s} \nrightarrow 0$ with $W_{n} \rightarrow \infty$. Indeed, we can take $\gamma_{2 k}=$ $1 / 6, \gamma_{2 k-1}=1 / k$.
Example 5.4. If $\gamma_{s} \geq c>0$ for all s then $\liminf _{n \rightarrow \infty} W_{n} \leq 1 / 2 c$.
Example 5.5. There exists γ with $\inf \gamma_{s}=0$ and $\liminf _{n \rightarrow \infty} W_{n}<\infty$. Here we can take $\gamma_{s}=1 / 6$ for $s \neq s_{k}$ and $\gamma_{s_{k}}=1 / k$ for a sparse sequence $\left(s_{k}\right)_{k=1}^{\infty}$. Then $\left(W_{2^{s_{k}}}\right)_{k=1}^{\infty}$ is bounded.

6. Towards the Szegő class

The convergence of the integral on the left-hand side of (5.1) defines the Szegő class of spectral measures for the finite gap Jacobi matrices. The Widom condition on the right-hand side is the main candidate to characterize the Szegő class for the general case, see [10, 23, 29].

For the definition of regularity for the Dirichlet problem, see e.g. Chapter 4 in [25]. The equilibrium measure is the most natural measure in the theory of orthogonal polynomials. In particular, for known examples, the values $\lim \sup W_{n}$ associated with equilibrium measures are bounded below by positive numbers. So we make the following conjecture:

Conjecture 6.1. If a compact set K is regular with respect to the Dirichlet problem then the Widom condition $W_{n} \nrightarrow 0$ is valid for the equilibrium measure μ_{K}.

Concerning the Szegő condition, one can conjecture that the left-hand side of (5.1) can be written as

$$
\begin{equation*}
I(\mu):=\int \log \left(d \mu / d \mu_{K}\right) d \mu_{K}(t)>-\infty \tag{6.1}
\end{equation*}
$$

provided that the support of μ is a perfect non-polar compact set. Indeed, for the finite gap case, this coincides with the condition in (5.1), since the integral $\int \log \left(d \mu_{K} / d t\right) d \mu_{K}(t)$ converges. By Jensen's inequality (see also Section 4 in [12]), the value $I(\mu)$ is nonpositive and it attains its maximum 0 just in the case $\mu=\mu_{K}$ a.e. with respect to μ_{K}. On the other hand, there are strong objections to (6.1), based on the numerical evidence from [18], where, for the Cantor-Lebesgue measure $\mu_{C L}$ on the classical Cantor set K_{0}, the Jacobi parameters $\left(a_{n}\right)$ were calculated for $n \leq 200.000$. The Widom factors for such values behave as a bounded below (by a positive number) sequence. Therefore, if we wish to preserve the Widom characterization of the Szegő class, the integral $I\left(\mu_{C L}\right)$ must converge, but, since $\mu_{C L}$ and $\mu_{K_{0}}$ are mutually singular, it is not the case.

References

[1] Alpan, G., Goncharov, A.: Two measures on Cantor sets. J. Approx. Theory. 186, 28-32 (2014)
[2] Alpan, G., Goncharov, A.: Orthogonal polynomials on generalized Julia sets. Preprint (2015), arXiv:1503.07098v3
[3] Avila, A., Jitomirskaya, S.: The ten martini problem. Ann. of Math. 170, 303-342 (2009)
[4] Barnsley M.F., Geronimo, J.S., Harrington, A.N.: Orthogonal polynomials associated with invariant measures on Julia sets. Bull. Amer. Math. Soc. 7, 381-384 (1982)
[5] Barnsley M.F., Geronimo, J.S., Harrington, A.N.: Infinite-Dimensional Jacobi Matrices Associated with Julia Sets. Proc. Amer. Math. Soc. 88(4), 625-630 (1983)
[6] Barnsley, M.F., Geronimo, J.S., Harrington, A.N.: Almost periodic Jacobi matrices associated with Julia sets for polynomials. Comm. Math. Phys. 99(3), 303-317 (1985)
[7] Bellissard, J., Bessis, D., Moussa, P.: Chaotic States of Almost Periodic Schrdinger Operators. Phys. Rev. Lett. 49, 701-704 (1982)
[8] Bessis, D., Moussa, P.: Orthogonality properties of iterated polynomial mappings. Comm. Math. Phys. 88, 503-529 (1983)
[9] Brück, R., Büger, M.: Generalized iteration, Comput. Methods Funct. Theory 3, 201-252 (2003)
[10] Christiansen, J.S.: Szegő's theorem on Parreau-Widom sets. Adv. Math. 229, 1180-1204 (2012)
[11] Christiansen, J.S., Simon, B., Zinchenko, M.: Finite Gap Jacobi Matrices, I. The Isospectral Torus. Constr. Approx. 32, 1-65 (2009)
[12] Christiansen, J.S., Simon, B., Zinchenko, M.: Finite Gap Jacobi Matrices, II. The Szegö Class. Constr. Approx. 33(3), 365-403 (2011)
[13] Christiansen, J.S., Simon, B., Zinchenko, M.: Finite gap Jacobi matrices: a review.. American Mathematical Society. Proceedings of Symposia in Pure Mathematics, p. 87-103 (2013)
[14] Dombrowski, J.:Quasitriangular matrices. Proc. Amer. Math. Soc. 69, p. 95-96 (1978)
[15] Geronimo, J.S., Van Assche, W.:Orthogonal polynomials on several intervals via a polynomial mapping. Trans. Amer. Math. Soc. 308, 559-581 (1988)
[16] Goncharov, A.: Weakly equilibrium Cantor type sets. Potential Anal. 40, 143-161 (2014)
[17] Heilman, S.M., Owrutsky, P., Strichartz, R.: Orthogonal polynomials with respect to selfsimilar measures. Exp. Math. 20, 238-259 (2011)
[18] Krüger, H., Simon, B.: Cantor polynomials and some related classes of OPRL. J. Approx. Theory (2014), http://dx.doi.org/10.1016/j.jat.2014.04.003
[19] Makarov, N.G., Volberg, A.: On the harmonic measure of discontinuous fractals. LOMI preprint, E-6-86, Steklov Mathematical Institute, Leningrad (1986)
[20] Mantica, G.: A Stable Stieltjes Technique to Compute Jacobi Matrices Associated with Singular Measures Const. Approx. 12, 509-530 (1996)
[21] Mantica, G.: Quantum Intermittency in Almost-Periodic Lattice Systems derived from their Spectral Properties, Physica D, 103, 576-589 (1997)
[22] Mantica, G.: Numerical computation of the isospectral torus of finite gap sets and of IFS Cantor sets, Preprint (2015), arXiv:1503.03801
[23] Peherstorfer, F., Yuditskii, P.: Asymptotic behavior of polynomials orthonormal on a homogeneous set. J. Anal. Math. 89, 113-154 (2003)
[24] Poltoratski A., Remling, C.: Reflectionless Herglotz functions and Jacobi matrices. Comm. Math. Phys. 288, 1007-1021 (2009)
[25] Ransford, T.:Potential Theory in the Complex Plane. Cambridge University Press, (1995)
[26] Saff, E.B., Totik, V.: Logarithmic potentials with external fields. Springer-Verlag, New York (1997)
[27] Simon, B.: Almost periodic Schrödinger operators: A Review. Adv. Appl. Math. 3, 463-490 (1982)
[28] Simon, B.: Equilibrium measures and capacities in spectral theory. Inverse Probl. Imaging 1, 713-772 (2007)
[29] Sodin, M., Yuditskii, P.: Almost periodic Jacobi matrices with homogeneous spectrum, infinite-dimensional Jacobi inversion, and Hardy spaces of character-automorphic functions. J. Geom. Anal. 7 (1997), 387-435
[30] Totik, V.: Orthogonal polynomials. Surv. Approx. Theory 1, 70-125, (2005)
[31] Widom, H.: Polynomials associated with measures in the complex plane. J. Math. Mech. 16, 997-1013 (1967)
[32] Widom, H: Extremal polynomials associated with a system of curves in the complex plane. Adv. Math. 3, 127-232 (1969)

Department of Mathematics, Bilkent University, 06800 Ankara, Turkey E-mail address: gokalp@fen.bilkent.edu.tr
Department of Mathematics, Bilkent University, 06800 Ankara, Turkey
E-mail address: goncha@fen.bilkent.edu.tr

[^0]: 2010 Mathematics Subject Classification. Primary 42C05, 47B36; Secondary 31A15.
 The authors are partially supported by a grant from Tübitak: 115F199.

